Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
264,319 result(s) for "Pollution control"
Sort by:
Characteristics of incineration ash for sustainable treatment and reutilization
Municipal solid waste incineration (MSWI) generates bottom ash, fly ash (FA), and air pollution control (APC) residues as by-products. FA and APC residues are considered hazardous due to the presence of soluble salts and a high concentration of heavy metals, and they should be appropriately treated before disposal. Physicochemical characterization using inductively coupled plasma mass spectroscopy (ICP-MS), X-ray diffraction (XRD), and X-ray fluorescence (XRF) have shown that FA and APC have potential for reuse after treatment as these contain CaO, SiO 2 , and Al 2 O 3 . Studies conducted on treatment of FA and APC are categorized into three groups: (i) separation processes, (ii) solidification/stabilization (S/S) processes, and (iii) thermal processes. Separation processes such as washing, leaching, and electrochemical treatment improve the quality and homogeneity of the ash. S/S processes such as chemical stabilization, accelerate carbonation, and cement solidification modify hazardous species into less toxic constituents. Thermal processes such as sintering, vitrification, and melting are effective at reducing volume and producing a more stable product. In this review paper, the treatment processes are analyzed in relation to ash characteristics. Issues concerning mixing FA and APC residues before treatment, true treatment costs, and challenges are also discussed to provide further insights on the implications and possibilities of utilizing FA and APC as secondary materials.
Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based decomposition analysis
In 2013, China's government published the Air Pollution Prevention and Control Action Plan (APPCAP) with a specific target for Beijing, which aims to reduce annual mean PM2.5 concentrations in Beijing to 60 µg m-3 in 2017. During 2013–2017, the air quality in Beijing was significantly improved following the implementation of various emission control measures locally and regionally, with the annual mean PM2.5 concentration decreasing from 89.5 µg m-3 in 2013 to 58 µg m-3 in 2017. As meteorological conditions were more favourable to the reduction of air pollution in 2017 than in 2013 and 2016, the real effectiveness of emission control measures on the improvement of air quality in Beijing has frequently been questioned.In this work, by combining a detailed bottom-up emission inventory over Beijing, the MEIC regional emission inventory and the WRF-CMAQ (Weather Research and Forecasting Model and Community Multiscale Air Quality) model, we attribute the improvement in Beijing's PM2.5 air quality in 2017 (compared to 2013 and 2016) to the following factors: changes in meteorological conditions, reduction of emissions from surrounding regions, and seven specific categories of local emission control measures in Beijing. We collect and summarize data related to 32 detailed control measures implemented during 2013–2017, quantify the emission reductions associated with each measure using the bottom-up local emission inventory in 2013, aggregate the measures into seven categories, and conduct a series of CMAQ simulations to quantify the contribution of different factors to the PM2.5 changes.We found that, although changes in meteorological conditions partly explain the improved PM2.5 air quality in Beijing in 2017 compared to 2013 (3.8 µg m-3, 12.1 % of total), the rapid decrease in PM2.5 concentrations in Beijing during 2013–2017 was dominated by local (20.6 µg m-3, 65.4 %) and regional (7.1 µg m-3, 22.5 %) emission reductions. The seven categories of emission control measures, i.e. coal-fired boiler control,clean fuels in the residential sector, optimize industrial structure,fugitive dust control, vehicle emission control,improved end-of-pipe control, and integrated treatment of VOCs, reduced the PM2.5 concentrations in Beijing by 5.9, 5.3, 3.2, 2.3, 1.9, 1.8, and 0.2 µg m-3, respectively, during 2013–2017. We also found that changes in meteorological conditions could explain roughly 30 % of total reduction in PM2.5 concentration during 2016–2017 with more prominent contribution in winter months (November and December). If the meteorological conditions in 2017 had remained the same as those in 2016, the annual mean PM2.5 concentrations would have increased from 58 to 63 µg m-3, exceeding the target established in the APPCAP. Despite the remarkable impacts from meteorological condition changes, local and regional emission reductions still played major roles in the PM2.5 decrease in Beijing during 2016–2017, and clean fuels in the residential sector, coal-fired boiler control, and optimize industrial structure were the three most effective local measures (contributing reductions of 2.1, 1.9, and 1.5 µg m-3, respectively). Our study confirms the effectiveness of clean air actions in Beijing and its surrounding regions and reveals that a new generation of control measures and strengthened regional joint emission control measures should be implemented for continued air quality improvement in Beijing because the major emitting sources have changed since the implementation of the clean air actions.
Stronger policy required to substantially reduce deaths from PM2.5 pollution in China
Abstract Air pollution kills nearly 1 million people per year in China. In response, the Chinese government implemented the Air Pollution Prevention and Control Action Plan (APPCAP) from 2013 to 2017 which had a significant impact on reducing PM 2.5 concentration. However, the health benefits of the APPCAP are not well understood. Here we examine the spatiotemporal dynamics of annual deaths attributable to PM 2.5 pollution (DAPP) in China and the contribution from the APPCAP using decomposition analysis. Despite a 36.1% increase in DAPP from 2000 to 2017, The APPCAP-induced improvement in air quality achieved substantial health benefits, with the DAPP in 2017 reduced by 64 thousand (6.8%) compared to 2013. However, the policy is unlikely to result in further major reductions in DAPP and more ambitious policies are required to reduce the health impacts of air pollution by 2030 and meet the United Nation’s Sustainable Development Goal 3.
Whether green technology innovation is conducive to haze emission reduction: empirical evidence from China
With the acceleration of industrialization, haze pollution has become a severe environmental pollution problem, and green technology innovation is one feasible way to alleviate it. Based on the PM 2.5 concentration data of 30 provinces in mainland China from 2011 to 2017, we use a spatial panel model to investigate the spatial characteristics of haze pollution and examine the impact of green technology innovation on it. Results show that haze pollution has spatial correlation and a time lag. Its spatial correlation is associated with geographical distance as well as the compound influence of distance and economic development. Green technology innovation and foreign investment have inhibitory and negative spillover effects on haze pollution. Industrial structure and energy consumption structure play a partial intermediary role between green technology innovation and haze pollution, and the former has a significant negative spillover, while the latter has a positive effect. To reduce haze pollution, China should improve the level of green technology innovation, use foreign investment wisely, and enhance policy support and guidance. It should also promote the rationalization of industrial structure, optimize energy structure, and implement energy substitution. Finally, it is crucial that it should strengthen regional collaborative governance and build a multi-agent governance system.
Sound-politics in São Paulo
\"Cardoso presents Sound-Politics in São Paulo as the first book-length treatment on controversies surrounding noise control in Latin America\"-- Provided by publisher.
Environmental decentralization, environmental protection investment, and green technology innovation
The reform of environmental management systems is key to improving environmental pollution treatment and green technology innovation. Based on panel data on 30 provincial administrative regions in China for 2008 to 2016, this paper analyzes the impacts of environmental decentralization and environmental protection investment on green technology innovation. It is first found that environmental decentralization promotes green technology innovation after inhibition. Similar effects are found for environmental administrative decentralization, environmental monitoring decentralization, and environmental supervision decentralization. Second, in the long run, environmental decentralization in developed and low-emission regions is more conducive to green technology innovation. Third, environmental pollution treatment investment has a significant inhibiting effect on green technology innovation under high levels of environmental decentralization, and the inhibiting effects of industrial pollution source treatment investment and “three simultaneous” construction project investments are particularly obvious. This paper explores green technology innovation as the goal of environmental decentralization, which is the driving force behind pollution control. From the perspective of environmental protection investment, the paper further analyzes the impact of environmental decentralization on green technology innovation. The study has important reference value for determining reasonable levels of environmental decentralization among different levels of governance and in formulating differentiated strategies of environmental decentralization.